PHYSICAL REVIEW E VOLUME 57, NUMBER 3 MARCH 1998

Strongly localized vectorial modes in nonlinear waveguide arrays
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We report the existence of a variety of strongly localized bright vectorial modes in discrete cubic media with
self- and cross-modulation. In addition to the modes familiar from the scalar limit, interesting types of solu-
tions can be identified. These solutions are unique, to our knowledge, and have no analogs in other discrete or
continuous models. The linear stability analysis of the vectorial modes discloses various instability scenarios,
and permits us to draw conclusions for potential all-optical switching schemes. The analytical results obtained
are confirmed by direct numerical simulations.
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I. INTRODUCTION soliton could be derived by use of the inverse scattering
transform[25]. However, the very effect of intrinsic local-

It is now commonly believed that the remarkable pecu-ization in discrete systems with a two-component field,
liarities of nonlinear optical waveguide and fiber arrays carwhich can be described by two coupled DNLSE's
potentially be exploited in all-optical signal processisig- (CDNLSE), has not been addressed to date.
nal steering and routing amplification, and generation of ~ The aim of this paper is to investigate strongly localized
pulse trains with a high repetition rate. The existence of in-vectorial states of the CDNLSE systematically. We derive
trinsically localized states in arrays with a culgicerr) non- ~ approximate analytical solutions for strongly localized
linearity, where the field evolution can be described by thenodes(SLM’s) of different topologies, study their stability
discrete nonlinear Schdinger equatiofDNLSE), has been by a linear analysis, and verify the results obtained by nu-
proved, and their properties have been analyzed systemafii€rical experiments. It is shown that the topology of some
cally [1-5]. As a consequence of these studies it was sugvectorial localized states can considerably deviate from that
gested to exploit localized states for power- and phaseof continuous vector solitons as well as from localized solu-
controlled switching and steeriig—10]. Beyond the optical tions in other discrete systems studied previously.
environment other nonlinear discrete systems, described b¥| The paper is organized as follows: In Sec. Il we introduce
different equations, may exhibit bright and dark states thathe CDNLSE under investigation, and discuss its parameters
are almost entirely localized on a few sités even on a and normalization. In Sec. lll, analytic expressions for vec-
single sit¢ [11-15. Moreover, other phenomena such astorial bright SLM's of different topologies are derived. The
modulational instability of plane waves, formation and sta-stability analysis of typical SLM’s is performed and impli-
bility of temporal solitons, and the recurrence effect occur incations for all-optical signal processing are discussed in Sec.
a quite different way compared to the continuum césee
Refs.[16—20, and references therginSome theoretically
predicted properties of discrete systems, e.g., the existence ||. BASIC EQUATIONS AND NORMALIZATION

and dynamics of localized states, were experimentally veri- _ . - .
fied [21,22). In an array ofn lossless, identical, and equidistant optical

As regards arrays of optical waveguides, the evolution ofvaveguide the propagation of the two-component envelope
one-component fields, described by a single DNLSE, havdeld can be described by a set of difference-differential
been studied exclusively to date. However, a situation is fre€quations as
guently encountered where two waves, i.e., components with D
different frequencies or polarization states, copropagate in a, dE;,
waveguide. In this case the cubic nonlinearity provides a’ dZ
nonlinear coupling between these waves yielding to cross-
phase modulatiofXPM) and energy exchange. The latter =0,
effect can be neglected, provided that the wave-vector mis-
match between both field components is large. In continuous, dEﬁz)
systems the field dynamics can then be described by two' ~q7~
incoherently coupled NLSE'’s, the properties and solutions of
which were extensively studietbee Refs[23,24], and the =0. 1)
references thereinFor the specific case of equal self-phase
modulation (SPM) and XPM the system has proved to be HereE{") andE!? represent the field envelopes of both com-
integrable. An analytical expression for the resulting vectomponents in thenth channel, the evolution variable denotes
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the spatial coordinate along the waveguide, aBid, ogy and the symmetry of the solutions. Furthermore we
=m/(2L,,) are the respective coupling coefficients, wherestudy how the variation of the array parametéiisear cou-
L1, are the half beat lengths of the corresponding two corepling, nonlinearity as well as the input intensities of the two

coupler. The effective nonlinear  coefficients\;; componentgcontrol parametgraffect the field evolution.
=(wil2c)n;jpj; (i, j=1,2) with Pij:<|Ri|2|Rj|2>/<|Ri|2> in-
clude dimensionless functior®; describing the transverse A. Odd SLM’s

mode profile and the cubic nonlinear coefficients. The These modes are centered on site, and exhibit different

brackets denote integration over the cross section of th . - ; .
waveguide. For weak?y guided modes in optical fibers, Wegymme:r!es. ':'htgre art()e E[heI convenzlonal tshmiet:ICh;tn%aml-
have p;;~0.5[23,24. The transverse coupling in the array Symmetric solutions, but also hew types that we tshite

may be interpreted as “discrete diffraction,” which trans- modes. The latter represent vectorial modes where the
y P . o . S maxima of the two components are located at different
forms to ordinary diffraction in the continuous limit.

. . . . waveguides.
Equationg1) can be recast in the more convenient Hamil- 9

tonian forms 1. Symmetric mode

CdA, ) ) We insert a,=A(...,85,a;,18;,8,,...) and B,

|55 T CalAns1tAn-1)+ (Aol Al*+[Bp|*)Ar=0, =B(...,by,by,1b1,by,...) into Eq. (2), and obtain, after
straightforward calculations, the approximate analytic ex-

dB pression for this SLM as

. n 2 2

I d_+cb(Bn+l+Bn71)+(|An| +)\b|Bn| )B,=0, 2 2 2 9 9

z ka:)\aA +B y kb:A +)\bB (3)

where the scalingsc, p=Ciolni, Aa=M11/A12>0, Ay for the corresponding wave vectors, and
=Np2/N12>0, z=Z/| Ly, An=INa /N (ESVER), By
=e@/ER . and Ly =(A1JEL ) have been applied; a;=a~Ca/ka<1, by=b~c,/k,<1 4
E@, is the peak amplitude of the second field component.
As in the continuous model, syste(®) describes cou-
pling between modes which either oscillate at different fre
guencies X,~\,~0.5) or are orthogonally polarized in a
highly birefringent waveguide. In the case of an elliptically
birefringent fiber,\ ;=\, varies between 0.5 and 1.5 de-
pending on the angle of ellipticit}26].
Provided that the field envelopes vary slowly withEgs.
(2) can be transformed into the extensively studied continu

for the secondary excitations. This approximation is consis-
tent with the very subject of our studies, namedyrongly
“localized modes. Note that the peak amplitudeandB are
arbitrary parameters. We can calculate the secondary excita-
tions with any desired accuracy. But because we are prima-
rily interested in physical aspects of the problem, we restrict
ourselves to the first-order approximation with respect to the
small parametera,b<1,and neglech,*a? andb,xb? to-

¢ hich d i | tion in a di “gether with the higher-order terms. As will be shown below,
ous d_sys erT'lr:NSII;:M es(‘f;;j pTuhse p_rotpaga |ofn In (’ti _|s|per|s_| ese first-order calculations usually provide a sufficient ac-
medium wi an - 'he existence ot vectonial SOll- ¢, 50y to understand the basic SLM properties. But, if re-

ton s_olutions to this system_givgs some evidence that Sim""j‘(ﬁuired we take into account higher-order terms in conjunc-
localized solutions may exist in the discrete case as wel if)n wi,th excitations of adjacent channels

However, the very e_xistence of these discrete counterparts " It is worth mentioning that the solutions found exist both
the continuous solutpns has not been reported_to date. In this, positive (focusing and negativedefocusing nonlinear-
context it is worthwhile to study how the continuous solu-

. . . ) - ity \j;. According to the normalization, the latter reverses
tions transform into discrete solutions of similar topology, the sign of the normalized coupling constant,— —c,
» a,b»

and if ther'e are S°|Ut.'0ns with new topologies which ar€yhich implies a phase shiftr between subsequent sites.
formed owing to the discrete nature of the system.

Thus, assuming a positive coupli@ ,, which is physically
meaningful only, and defocusing nonlinearity;(<0), we
IIl. BRIGHT SLM’s OF THE CDNLSE obtain the so-calledtaggeredSLM'’s [5]. These modes are

Highly localized solutions to Eq(2) can be found by cha_racterized by & phase change f_rom channel to channel.
generalizing a method previously applied to one-dimensional © illustrate the structure of the different modes, they are
nonlinear lattice§1,13] toward vectorial fields. We consider Schematically drawn in Fig. 1.
only resting solutions and can thus make the anggiz
= apexplks2) and B,= Bexp(ky2). The stationary ampli-
tudes in each channel,= Aa, and 8,,=Bb, are normalized Antisymmetric modes represent another family of solu-
by the maximum valued andB, respectively. Without loss tions, and are characterized by a zero amplitude at the central
of generality these maximum amplitudes can attain eithesite. Analogously to the previous case, this type of
sign and are assumed to be real. InserfinggandB,, into Eq.  mode can be found by use of the approximate
(2) we arrive at a system of algebraic equations. Its solutiornsatz ~ a,~A(...,0,0a,1,05,,5,a,0,0,...) and B,
yields the stationary excitations in each waveguide of an ar=B(...,0,0p,1,0s,,5,b,0,0 . . .), wheres, ands, are scal-
ray (or equivalently on each site of a latticthat eventually ing factors. They include the possible change of the phase by
constitute SLM'’s of different topologies. We are now going 7 across the mode. Substitution af, and 3, into Eq. (2)
to discuss these solutions in detail, where we attempt to initmmediately yields,=s,= — 1, revealing the antisymmetric
troduce a systematic categorization with respect to the topokharacter of the solution with respect to the central site with

2. Antisymmetric mode
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FIG. 2. Intensity of theB component in the two adjacent chan-
nelsn=1 (a) andn=0 (b) as a function of the ratio of peak am-
plitudes|A|/|B| and the propagation distanze All quantities used

gin this and in the following figures are dimensionless. Parameters:

modes. Unidirectional and contradirectional arrows denote in-phasga=Cb=0-2,Aa=A,=1, andB=1.

and out-of-phaséw phase shift oscillations of the electric field.
Right- and left-hand side charts show staggddsfocusing nonlin-
earity \j;<0,) and unstaggeredfocusing nonlinearity\;;>0)
SLM’s, respectively.

[Fig. 2(@] andn=0 [Fig. 2(b)]) is shown as a function of the
amplitudeay=A. Equal coupling and nonlinear coefficients
for both components have been assumed. Evidently, the
shifted mode is formed and propagates stablgAf—B?|

zero amplituddFig. 1(b)]. The wave vectors and secondary €xceeds some critical value. Otherwise, the mode is unstable,

excitations of this SLM coincide with those given by E(3.

i.e., there is a periodic energy exchange between channels

and (4). Note that this type of mode can be viewed as a"=0 andn=1.

superposition of two symmetric odd SLM’s with a phase
difference . The zero amplitude at the central site results

B. Even SLM’s

from opposite signs and equal amplitudes of the secondary Now we proceed with even SLM’s which are centered

excitations there.

3. Shifted odd mode

The substitutiona,~A(...,0a_1,80=1,2,,0,0,...) and
Bn~B(...,0,0pg,b;=1)b,,0,...) into Eg. (2) reveals an-
other family of bright odd SLM’gFig. 1(c)]. The secondary
excitations of this mode,

a,1=Ca/(}\aA2), alzca/()\aAz_Bz)y

bo=cp/(NpyB?—A?%), by=cy/(\pB?), 5)

between the array sites. There is a greater diversity of solu-
tions compared to the previous situation, because in this case
more waveguides are involvedor a systematic overview,
see Fig. 3.

Bright even symmetric SLM'’s can be classified as unstag-
gered €,,>0) and staggeredcf,<0) depending on
whether the excitations in adjacent waveguides are in phase
or out of phase, respective[fig. 3@]. Moreover, like the
scalar DNLSE, the CDNLSE admits a family of even SLM’s
which are characterized by a phase jumpt the center, and
can thus be termetivistedmodes[Fig. 3(b)]. We will show
below that the stability behavior of these modes differs quali-

can again be derived from the corresponding set of algebrai@tively from that of odd staggered and unstaggered SLM's.
equations. The existence of such a SLM is a consequence of Furthermore the coupled syste@) provides a new fam-
the vectorial character of interaction. The correspondingly of even solutions, namely, asymmetric SLM®Bigs. 3c)

fields a, and b,, may have an asymmetric structufeig.
1(0)].

Note that expression) are only valid for strongly lo-
calized modes, i.e., for_; /<1 and|b,j<1. Hence the

evolution of this mode is drastically affected by the ratio of

the peak amplituded/B. In Fig. 2 the evolution of the field
intensities|by|? and |b,|? in two adjacent channelgr=1

and 3d)]. These modes have no counterparts in continuous
or in other discrete models. Finally, there is also a family of
shifted even solutionfFig. 3(e)].

1. Symmetric modes

We start with the class of symmetric SLM's
of the forms a,~A(...,0,0a,15,,5,2,0,0...) and 8,
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=1b,,0,0...) into Eq. (2), where the subscript=0 has

Unst d St d ; X
a b HStagEere (a) a.b aggete been dropped for convenience. Hésg ,|<1, which com-
e I l e ] plicates the analysis considerably. From the corresponding
2 2 2 set of algebraic equations we obtain the wave vectors and the

Y .
secondary amplitudes

Ka=CaSat AaA%+52B?,  ky=CpSp+S2A%+\,B2, (8)
Twisted Unstaggered (b) Twisted Staggered
anvbn I an)bn I a2=a,2=ca/ka, bzzbfzzcb/kb. (9)

e S v ¥ The amplitudess, and s, that enter Eqs(8) and (9) are
l determined by

Asymmetric (Ca—NaA%s,)(S5— 1) +B2s,(sp—1)=0,

an I an (Cp—NpB2sp)(SE— 1)+ A%s,(s2—1)=0. (10)
N I

v v Analytical solutions to Eq(10) can be found only in some
b, by particular cases. For example, assumspg s,, one imme-
I I I diately obtains this value together with a condition for the
4 4 l : .
) ¥ ratio of the peak amplitudes

. C,+Cp\
Shifted S A 2/p2_
Sa=Sp BZ()\a)\b_ g A%IB = (Cc A ptCp)/(CpratCy).

(e) (11)

An
I As can be easily seen from E(l1), these solutions do not
A— I t exist for A\;\p~1. One of the possible realizations of this
b, mode is shown schematically in Fig(c3.
I Another case which is analytically solvable requires that
T 4 one of the excitations, or s, is much less than unity. For
|sp|<1 and|s,|=1, the approximate solutions to E(LO)
can be written as

FIG. 3. Same as in Fig. 1 for even modes.

2
~B(...,0,0b,15s,,5,b0,0,0 ...), where for the symmetric 21— B 1+ Ca
case Eq(2) requiress, ,= =+ 1 to hold. Thus the correspond- 2 NaA? VN ADZ=N,(AB)?)’
ing wave vectors and amplitudes of the secondary excitations
are given in a first-order approximation by Cpha
Sp~ o~ <1. (12
B(Ag\p—1)

Ka=CaSat+AA%2+ B2,  kp=cpsp+A%+A,B%2  (6)
This particular of a SLM can be viewed as a bound state
a=calky, b=cplky. (7)  formed by an even asymmetric mod&,j and an odd mode
. . . (Bp) [Fig. 3d)].
Owing to]al,|b<1 the modes are again strongly localized.
Similarly to the respective odd modes, the wave vectors and 3. Shifted even mode
the secondary amplitudes are not affected by the sigA of
andB (i.e., phase 0 orr for the entire solution Recalling
that for a defocusing nonlinearity\(; <0) the coupling co-
efficients are negative, it follows from E7) that a,b<0.

To obtain this mode we writea,~A(...,0a_5,a_1
:1,a1,a2,0,0, .. ) and BHNB(...,O,Ob_l,bl,bz
=1b3,0,...) toobtain

Now it is clear that four different types of symmetric modes _ 2 _ 2

can exist. Fora,b>0 we obtainunstaggerednodes[Fig. Ka=RaA"Cadr, Kp=NpBT+ by,

3(a), left] being antisymmetric otwistedfor s, ,= — 1 [Fig. a_,=C,/k,, a,=c,a,/(ks—B?), bs=cy/kp,
3(b), left]. Conversely, staggered modes appearafdr<0

[Fig. 3(a@), right], and twisted modes here requsg,=1 to b_,=cyby /(ky—A2), (13)

hold [Fig. 3(b), right]. Note that a symbiotic pair alin)stag-
gered and twistedun)staggered components is also possiblewhere the amplitudes of the excitatioas and b, are the

solutions of
2. Asymmetric modes

2 2 202, _
These modes can be obtained upon substitution of the (Ca—AaA%ay)(1-ay) +Bbia; =0,

asymmetric ansatz  «a,~A(...,0,0a_,,a_;=1a; 5 ) )2
=5,,5,8,,0,0...) and B,~B(...,0,0s,b_,,b_;=5s,,b; (cp—=ApBb1)(1—-b7)+A%aib,=0. (14
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form adiabatically into stable, stationary solutions of the
(a) complete CNLDSH?2). Second, implications for all-optical
switching and beam steering can be derived in identifying
the boundaries in parameter space between stable and un-
stable domains.

In the literature, various approaches were used to investi-
gate the stability behavior of strongly localized solutions in
discrete systems. Obviously, a complete scan of the param-
eter space is inappropriate by means of a direct numerical
integration of Eq.(2). Another evaluation of the stability
relies on the so-called Peierls-NabafRiN) barrier[4,5]. Ac-
cording to this concept, odd and even modes of the same
topology can be considered as two realizations of a common
mode centered either on-site or between the sites. Now for
odd and even SLM'’s of equal intensities, the difference in
the corresponding Hamiltoniangiz. the PN barrier deter-
mines which of the two realizations corresponds to the mini-
mum energy and hence is stable. To interpret the results
correctly, a negative effective mass has to be introduced for
staggered solution$]. Being only a qualitative method, the
PN approach provides no information about the instability
gain, and fails in analyzing the stability of twisted modes
because they lack an odd counterpart. Eventually, the varia-
tional approach was applied to study the stability of rela-
tively weakly localized modes of the generalized DNLSE
_ _ [27], and the chaotic behavior of solutions of three coupled

FIG. 4 Stable propaggtlon of a perturbed even-shifted SLMN| SE’s was predicted by calculating the Lyapunov exponent
schematically shown in Fig. (8). Pargmetersca=cb=0.05, )\a_. 28,29.
=Ap=05, andA=B=1. The waveguides are labeled by positive © A cjear and instructive alternative to tackle the stability
numbers. problem consists of performing a direct linear analysis. Us-
ing this approach, it was showB0] that, in contrast to the
DNLSE, the odd localized modes of the Fermi-Pasta-Ulam
lattice are unstable, whereas even modes have been proven to
be stable. Although this method cannot predict the ultimate
evolution of an unstable SLM, it accurately describes the
, Ny AZ—B2) , Na(ApB2—A2) onset of instability and yields the initial instability gain, i.e.,
al~—————, bi=~————. (15 the decay rate of the mode.

A (Nahp—1) B*(Nahp—1) To investigate the stability, we impose complex perturba-

. . . : : tions e,(t) and §,(t) on each nonzero excitation of both
A numerical experiment provesee Fig. 4_th_a_\t this S.h'ft.ed components of the vectorial SLM’s. Beginning with even
mode may propagate stable even if the initial profile is Cal'modes we insert the perturbed stationarv soluti
culated by using the approximate formyleb). Here equal = A( E)O e o dte 2 te.. sates qu ) Zﬂs
peak amplitudé\=B have been used. The peculiarity of this 3 :'é'( ’ gOb ;25 1;1’5"‘ < *+1’5a S b++2,57 00 )
mode is worth noting, viz., only one excitation of each com-2 = ="~ ~ c2am S +1|’ b *ﬁ' rline
ponent, i.e.a, andb,, exhibits ther phase shiffFig. 3©)] into the governing equation®). Neglecting all nonlinear

This disting uilshes trlﬁs SLM from the unstaggered as well a&™ms " the small parameteash, e ., ando..;(j=1,2), we

the twistedg modes 99 obtain a set of eight coupled complex ordinary differential

Another solution to Eq(14) can be obtained in the limit- equations that is qulvalent to a 16th_-order e!genvalue prob-
. o lem. But, the analysis can be simplified considerably by us-
ing case of very small excitationsa,|,|b;<1. Thena;

~c./(\,A2) and by~c,/(\,B?), and the shifted even ing a proper decomposition of the perturbatiosis=e .|

mode transforms into the doubly shifted odd mode. +e_jand gy =4,;+ 4 into symmetric(+) and antisym-
metric (—) components. In doing so, the dimension can be
reduced by a factor of 2 because the problem splits into two

independent parts. After the separation of real and imaginary

In Sec. lll, the existence of various stationary vectorialparts of the perturbations:j"=¢j;+isjj and & =5
solutions of the CNLDSE, that are strongly localized acrossti&ﬁ , We arrive at the eighth-order eigenvalue problem for
the array, was shown. Obviously, the stability of thesereal variables:

SLM'’s is an important issue which will now be addressed.

This subject is of particular interest here for two reasons. dP
First, because the solutions were derived by using some ap- dz
proximation, they contain some “intrinsic perturbation.”

Thus the question arises immediately if these modes tranddere the perturbation vector Pt

—
\

=

For relatively large amplitudesa;>c,/(A,A%) and b,
>cy,/(\,B?), EQ. (14) exhibits approximate solutions

IV. STABILITY ANALYSIS OF BRIGHT SLM'’s

Ma MA) P. (16)

Mg Mg
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= (&1, ,£1; €5, 85,01, ,01:, 05, 05) | contains either sym- bations(+) of one component are coupled to aptisyn;nrpetric
metric (+,+) or antisymmetriq—,~) perturbations of both ones (—) of the other component, ie.,P™"
fields if the components of the vectorial SLM exhibit the =(&1;,&1; €27 €201, ,61; 03, 65,) . The square %4
same symmetrys,=s;,). Fors,=—s,, symmetric pertur- submatricesM, g andM 4 g have the forms

0 Ca(P—Sa) 0 Ca
| —2NA%—cy(ps)) 0 —-c, 0
AT 0 Ca 0 —(CaSat NA%+B?) |
—c, 0 CaSat+ N A2+ B? 0
0 ChSp(SaP—1) 0 Ch
—2\,B2—Cpsp(s,p—1) 0 —cp 0
Mg= 0 cy 0 —(CoSo+AZ+N,BY) | (a7
—Cp 0 CbSb+A2+ )\sz 0
|
where p denotes the symmetry of the perturbation, ig., In contrast to(un)staggered SLM’s, modes witha<0,

=1 and—1 correspond to the upper and lower sign in thenamely,twisted staggeredTS) (s=1, a<0) andtwisted un-
expression for the perturbation vector, respectively. BottstaggeredTU) (s=—1, a>0) SLM’s, are unstable only if
submatricesMA,Bz"ci’,j,'B have only one nonzero element, the modulus of the amplitude exceeds some critical value,

viz. 5= — 25,5,B andq 5,= — 2s,5,A?, respectively. i.e.,|a|>ag,~0.12. The corresponding gain is
Scalar limit. Before proceeding with the stability analysis
of the vectorial modes, we concisely review the scalar case g~V(—sa-ay)/2, sata,<0 (20

for the sake of comparison. If eith&® or A vanishes, Eq.

(16) simplifies to the eigenvalue problem of the scalar casésee Fig. 5, lower curvesThe stability of the twisted modes
which was studied in detail in Ref31]. If we introduce can be explained by the fact that neither the TU nor TS mode
e = xexp(G2), where for an even scalar modte=k,|g—, is  has a topological counterpart among odd SLM’s. Hence such
given by Eq.(6), the scaled eigenvalugs=G/k can be de- a twisted SLM cannot transform into an odd one, and stabil-

rived from the biquadratic equation ity arguments based on the PN barrier do not apply here.
Beyond the critical value,,, the onset of instability mani-
g*+[1+2(p-s)a+2(3—2ps)a?]g? fests_ its_elf in a spreading of the mode, and_sets in_ if the
localization becomes weaker because of an increasing sec-
+2(p—s)a+2(3—2ps)a’=0, (18  ondary amplitudela]. Note that the instability regions as

well as the gain do not significantly change if second-order
wheres,=s. If the symmetry of the perturbation coincides terms and excitations at sites|=3 are taken into account.
with that of the SLM 6=p), Eq.(18) does not exhibit real- Coming back to the vectorial case, one can show that the
valued solutions provided that is small as required. Thus corresponding eigenvalue problet6) can be reduced to a
the SLM is always stable against those perturbations. Thiguartic algebraic equation for the squared eigenvajes
result has been verified numerically. Conversely, if the perWhere a positive real part @= * Ju represents the insta-
turbation has the opposite symmetry of the SLp—s)  bility gain [Pxexp(G2), G=gk,]. If both components of the
the SLM can become unstallRe(@)+0]. We observed two
basically different kinds of SLMs dynamics. Both staggered

and unstaggered modesa>0) are always unstable with 0.6 o
respect to symmetric and antisymmetric perturbations, re- = ]
spectively, and the gain of instability o
2047
g~2+/sa(1—5sald) (19) £ ]
202
increases witha (see Fig. 5, upper branches$n agreement ]
with the previously reported resulfg,5,27, the instability 0.0 =—

of unstaggered modes is confirmed by a direct humerical 0.2
solution of the DNLSE. The perturbed unstaggefethg-

gered SLM decays and transforms subsequently into an odd

mode. For relatively small amplitudea£0.1) the interme- FIG. 5. Instability gain as a function of the secondary amplitude
diate asymmetric, oscillating state is fairly persistent, anca for even SLM's in the limit of the scalar DNLSE. Upper curves
can be thus considered a quasistationary state. apply to (un)staggered modes, and lower curves to twisted SLM’s.
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SLM have the same symmetrg(=s,=s), equal peak am-
plitudes A=B), and linear €¢,=c,=c) and nonlinear cou-
pling (\,=\p=1\), the characteristic polynomial of E¢{L6)
can be factorized into four easily solvable biquadratic equa
tions. We will show below that basic tendencies of SLM’s
evolution can be derived from this particular case. Hence wi
initially focus on these conditions which are also quite real-
istic.

The essential results compare to those obtained for th
scalar DNLSE. However, the vectorial nature of the interac-
tion introduces some new effects even if both components ¢
the SLM are equal. As expected, both unstaggered and sta
gered even modes&>0) are always unstable: the former
with respect to the antisymmetrip& — 1) perturbation and
the latter with respect to the symmetrip€1) one. In both
cases the instability gain coincides with that in the scalal
case(19) and, in addition, another eigenvalue(@f) evokes
the nonvanishing instability gain
A—1 1/2

5 Sa

A1 @)

g~2

if A\>1. The decay character of the respective SLM'’s re-
sembles that encountered in the scalar situation. The ant
symmetrically perturbed unstaggered SLM transforms intc
the odd mode in both components, as illustrated in Hig).. 6
However, being qualitatively the same, the transformation o
the even mode may result in an asymmetric odd state witl
different peak amplitudeld=ig. 6(@]. The transition distance

to the resulting odd state depends drastically on the value ¢
the secondary amplitude. If the secondary amplitude de
creases, the intermediate oscillating sféig. 6(a)] becomes
fairly persistent, and the small satellite pulse decouples onl
after the localized structure adiabatically loses some energ
due to diffraction across the array. There is no strong deper
dence on the sign of nonlinearity, and practically the sam
evolution was observed for<1 as well. Here only the gain
given by Eq.(19) causes the decay. This behavior can be
anticipated because the odd mode is the only stable counte.
partt of the even tuhnstagr?gred Slt'l\gl Thehe}lsymm(tart]ric Sta;[e tthel FIG. 6. Evolution of a perturbed symmetric unstaggered vecto-
system passes through is unstable, while another potential " <"/ (5.=S,—5—1). Parametersh,—\,—A—15. A=B

state to transfer to, the stable shifted odd mode, does no . .
. ! X ! =1 dc,=c,=c=0.44. P~—=(0.01,0,0,0,0,0,0,0,0,0,0
exist for equal peak amplitudes and B. » anda=Cp=¢ @ ( 0.0.0,0,0,0,0,0,0,0) Is

. . . the transition to the odd mode(b) P~ =(0.01,0,0,0,0,
The evolution of the SLM appears differently if both _ o1 9 0.0,0): the component has'(trze same o(scillatory behav-
components of the mode are antisymmetrically perturbeg,,
[Fig. 6(b)]. These initial conditions provoke a nonstationary
oscillatory solution. Note that an intense anharmonic energgbove, viz. it is linearly proportional to the coupling constant
exchange between the two waveguid&sy. 6(b)] occurs ¢ and, more important, independent of the peak amplitude
only if the nonlinearity exceeds some critical value-\ ., To check whether this behavior originates from the lack of
whereas for\ <\, both components exhibit periodic oscil- accuracy introduced by the first-order approximation, we
lations whose amplitudes do not exceed the amplitude of theook second-order terms into account in the small parameter
perturbation. The critical value of the nonlinearity where thea, as well as the next-order excitations= +3) which are
systems undergoes bifurcation depends on the array paranikewise of the order ofi?. The respective calculations again
eters and amounts te.~1.4 for the situation depicted in result in a positive eigenvalue, but are already proportional
Fig. 6. We stress, however, that any asymmetric perturbatioto ¢2. This clearly shows the artificial character of this insta-
causes a fast decay of the solutions reminiscent to that showility gain. This result was confirmed by numerical studies.

in Fig. 6(a). We also mention that in accounting for higher-order terms
If both the perturbation and the mode exhibit the samehe genuine gain given by Eqd9) and(21) is only slightly
symmetry 6, ,=p), a positive eigenvalue of Eq16) indi-  modified. Therefore, even unstaggefsthggerefimodes are

cates a small nonzero ga@=gk,~|c|v2(1—\)/(1+\) stable with respect to symmetri@antisymmetri¢ perturba-
for A<<1. This gain is quite different from that described tion.
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FIG. 7. Analytically calculated regions of stability and instabil-
ity of twisted vectorial SLM’s with equal peak amplitudés=B.
(I) Stable propagation of the modgl) Instability due to real posi-
tive eigenvalues(lIl) Instability due to complex eigenvalues.

This behavior of even symmetric SLM’s may find appli-

cations in digital information processing. Small perturbations

of one component launched into waveguides1(e;) and

n=-—1(s_4) serve as signals. If both signals are input si-

multaneouslye,=¢ ande _;=¢, which denotes a logic 1 in
both channelsor in the absence of any perturbatit =0
ande _1=0, logic zerg the output intensity in both channels

is high because the mode is stable with respect to the sym-

metric perturbation. Conversely, if only one sigeal(e _4)
is launched, the output intensity bbth componenti the
channeln=1 (n=—1) is high, whereas the intensity in the
adjacent channels is almost zdifig. 6(a)]. Thus the logic
functione, + £ _ (the bar denotes logic negatioin channel
n=1 and the complementary functian+«_, in channel
n=—1 can be realized.

Unlike the (antisymmetrically perturbedun)staggered
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FIG. 8. Propagation of the perturbed twisted unstaggered SLM
(s=—1). A=B=1,A,=\p=\, andc,=c,=c. TheB component
is shown, and theA component has a similar structur@) \
=0.9,¢=0.12(pointR in Fig. 7). The evolution corresponding to
pointSin Fig. 7 is similar.(b) A=0.9,c=0.07 (point Q in Fig. 7).

modes that always transform to an odd mode, the perturbe@) x =1.5 andc=0.29 (point T in Fig. 7).

twisted modes may exhibit three different types of evolution

de_pending on_the nonlinez_;\rity an_d the degree of localizatiogyeg place for a SLM located in region Ill, with a gain
(Fig. 7). The linear analysis predicts stable upper bound sefietermined by the imaginary part of the complex eigenvalue

by the critical secondary amplitudes,; and a.,, respec-
tively, as

2(1—)\)

acl~ 5y —7 [82l~0.12.

(22

Numerical integration of Eqs(2) confirms this prediction.
The propagation of thB component of the perturbed vecto-
rial TU SLM (point R in Fig. 7) is plotted in Fig. 8a). A

g =~v(a—ag»)/2, whereag, is given by Eq.(22).

Thus one can draw the conclusion that the character of
eigenvaluegreal or complexessentially determines the kind
of decay of the twisted mode. It is worth mentioning that for
N <1 theincreasinglocalization also results in an unstable
evolution(transition to region Il, see Fig.) Which is another
interesting peculiarity of twisted vectorial SLM’s.

Now we leave the symmetric cas@€B), and proceed
with a brief review of the essential features of SLM’s with

likewise stable behavior was observed for the mode |Ocatednequa| amplitudes, where we maintain the assumption of

at point S in parameter spacé-ig. 7). However, a slight
decrease in the secondary amplityttansition from poinfR

equal coupling constants and nonlinearities. Fam)stag-
gered modes the situation is qualitatively similar to the sym-

to pointQ, i.e., the location of the mode changes from do-metric case: a symmetric perturbation causes no instability

main | to domain I} leads to an instability gain

12
. A<],

|l

| @]

| al < | acr1|
(23)

gi~2

A
|a|(1—

1+

and the twisted unstaggerés= —1, a>0) or twisted stag-
gered(s=1, a<0) SLM becomes unstablg-ig. 8b)]. An-
other type of unstable evolution is shown in Figc)8 It

gain, whereas any asymmetric perturbation forces the SLM
to decay. We also note that these twisted modes may also
exist in other discrete systems such as Fermi-Pasta-Ulam lat-
tices or arrays with quadratic nonlinear{t$2].

As before, the twisted modes exhibit a much richer diver-
sity of evolution scenarios. Provided that one of the peak
amplitudes, saw, is fixed, an increasing ratiB/A tends to
stabilize the initially unstable SLM. For instance, if the linear
coupling slightly exceeds the critical value, so that the vec-
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instability gain
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FIG. 9. Instability gain of the asymmetric twistedlike mode as a
function of peak amplitud®. Parameters\,=\,=1.5, A=1.05,
c,=¢,=0.1,s,=—0.7, ands,=0.11.

torial SLM with equal amplitudes becomes unstable, a minor
increase iB (with A being constantwill stabilize the mode.
Analogously, if the linear coupling is sufficiently small to
guarantee a stable propagation of the symmetric mode, a
decrease irB down to some critical valu®., which is a
function of ¢ and \, will eventually destabilize the SLM.
This behavior can be easily understood recalling our previ-
ous results. The whole mode becomes unstable if the second-
ary excitation ofany componengxceeds the respective criti-
cal value. Thus the secondary excitation of the weéikethe
latter exampleB) component is responsible for the SLM’s
decay. Similarly to(un)staggered SLM'’s this dynamics im-
plies potential applications for all-optical switching, where a
slight change of the input intensity yields a strong output
modulation.

If the nonlinear coefficienk is fixed and the linear cou-
pling ¢ is weak, the mode is stable even for a vanishing
amplitude of the second componeBt=0). This is in agree-
ment with the scalar limit. Some more interesting features of
the SLM’s dynamics were identified by numerical means. If
the coupling constart,=c,=c corresponds to a stable situ-
ation in the scalar limife.g.,c=0.15 forA =1.5) the vecto-
rial mode becomes unstable for a relatively large secondary
excitation of theB component. However, this kind of insta-
bility occurs only in a narrow parameter regior<®.,<B
<B,». Obviously the weak second component is too poorly
localized for an independent stable propagation as a scalar
mode. Its trapping by the intensstrongly localizedfield A
leads to a stabilization of the whole vectorial mode. If the
amplitude B exceedsB,,, but this component is still not
strongly localized, theA field fails to trap, resulting in the
dec‘f"y O.f the yectorlal mode. The scenario of mode d|§|nte— FIG. 10. Propagation of a twistedlike asymmetric vectorial SLM
gration is similar to that plotted in Fig.(®. Conversely, if ¢ 1o set of parameters Fig. %) B=1: stable.(b) B=0.95:
the amplitude of the second component increases and €¥stable.
ceedsB,, both components are strongly localized, and

form a stable vectorial mode. exceeds the critical valu@2), which is equal for both com-
Another particular case, namely, that of equal self- andbonents here. This instability is due to complex eigenvalues.
cross-phase modulation {=\,=1), can be treated analyti- The very technique of the stability analysis can straight-

cally, because the eigenvalue problem factorizes into a proderwardly be extended toward odd modes. After decomposi-
uct of four biquadratic equations. In analyzing the charactertion of the perturbations into symmetric and antisymmetric
istic polynomial of Eq.(16), it can be shown that the ones, itis easy to realize that the system is solvable for the
situation completely resembles that for equal amplitudesantisymmetric perturbations, and reveals stability against
The SLM becomes unstable only if the secondary amplitudéhese perturbations. It remains to check the stability against



57 STRONGLY LOCALIZED VECTORIAL MODES N .. .. 3529

symmetric as well as perturbations of the central excitation.
A straightforward calculation leads to an eigenvalue problem
similar to that given by Eq.16) for symmetrically perturbed
even unstaggered SLMs. The detailed analysis yields that
symmetric odd modes become unstable only beyond the
strong localization limit, resulting in a spreading of the mode
across the whole array. Conversely, it turns out that symmet-
ric odd SLMs are always stable with respect to any pertur-
bation.

Unfortunately a proper decomposition of the perturbation,
that permits the simplifications used for symmetric and anti-
symmetric modes, fails in studying asymmetric modes. Be-
cause of the very asymmetric nature of the mode, the eigen-
value problem for the perturbations cannot be decoupled,
and, even in the simplest case of the first-order calculations,
a 16th-order eigenvalue problem has to be solved. In doing
so we found that “twistedlike” asymmetric statfsig. 3(d)]
can be either stable or unstable depending on the degree of
localization, whereas unstaggeredlikéig. 3(c)] solutions
are always unstable.

As can be seen from Fig. 9, the asymmetric SLM is sup-
posed to be stable if the peak amplitude of Bveomponent
exceeds some critical value that amount8te1 here. But,
this stable propagation, shown in Fig.(@0can be destroyed
by a slight change of the peak amplitud€g. 10b)]. Note

that this SLM decays more rapidly than symmetric twisted _ _— . . ,
modes do. This is due to an “intrinsic bias” of the mode . FIG. 11. All-optical switching by using asymmetric SLM’s. The

caused by the asymmetry. Hence it seems to be very prorr'1r3tenSity of theB component in channels with=1 (2 and n

o L ) . . .~ '=—1 (b) is plotted as a function of initial amplitude in channel
ising to use this kind (_)f mode in aII-op_tlcaI signal Processing, i n—1. £,(0), and thepropagation distance.

because less power is needed to switch the output state. We
performed numerical experiments to identify the optimumwere derived. Their stability was investigated by means of
array length as well as the control signal that diminishes thehe linear analysis. As in the scalar scenario, odd modes ap-
peak amplitude of th&® component. As can be recognized pear to be stable while evénn)staggered SLM’s are always
from Fig. 11, a change in the peak intensity of i&€om-  unstable with respect t@ntjsymmetric perturbation. Con-
ponent by a few percent suffices to switch the whole powekersely, even modes with the phase jump at the center

IB; 1

from one channel to the adjacent one completely. (twisted models can withstand any small perturbation. The
stability properties of these modes are determined by the
V. CONCLUSIONS ratio of nonlinear self- and cross modulation coefficients as

S v localized. briah il soluti ; well as by the degree of localization. The instability regions

tlroggy oca, 1z€d, “r? t vectorial so u(';lg.n_s of WO 4nd the respective gain found analytically permit to derive
coupled DNLSE's were shown to exist. In addition to con-jsjications for all-optical switching and logical operation.

ventional odd and even modes known from other discrete

systems, in particular from the scalar DNLSE, interesting
types of SLM’s—asymmetric and shifted modes—were
identified. We compared the properties of the same types of The authors gratefully acknowledge grants from the
solutions in the scalar and vectorial cases. Moreover, th®eutsche Forschungsgemeinschaft, Bonn and the Volk-
peculiarities of the these types of SLM’'s were discussedswagen Stiftung, Hannover. S. D. also acknowledges partial
Approximate analytic expressions for all types of SLM’s support from NATO Linkage Grant No. 960298.
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