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Strongly localized vectorial modes in nonlinear waveguide arrays
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We report the existence of a variety of strongly localized bright vectorial modes in discrete cubic media with
self- and cross-modulation. In addition to the modes familiar from the scalar limit, interesting types of solu-
tions can be identified. These solutions are unique, to our knowledge, and have no analogs in other discrete or
continuous models. The linear stability analysis of the vectorial modes discloses various instability scenarios,
and permits us to draw conclusions for potential all-optical switching schemes. The analytical results obtained
are confirmed by direct numerical simulations.
@S1063-651X~98!02903-1#

PACS number~s!: 42.65.Wi, 42.81.Qb, 03.40.Kf
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I. INTRODUCTION

It is now commonly believed that the remarkable pec
liarities of nonlinear optical waveguide and fiber arrays c
potentially be exploited in all-optical signal processing~sig-
nal steering and routing!, amplification, and generation o
pulse trains with a high repetition rate. The existence of
trinsically localized states in arrays with a cubic~Kerr! non-
linearity, where the field evolution can be described by
discrete nonlinear Schro¨dinger equation~DNLSE!, has been
proved, and their properties have been analyzed system
cally @1–5#. As a consequence of these studies it was s
gested to exploit localized states for power- and pha
controlled switching and steering@6–10#. Beyond the optical
environment other nonlinear discrete systems, described
different equations, may exhibit bright and dark states t
are almost entirely localized on a few sites~or even on a
single site! @11–15#. Moreover, other phenomena such
modulational instability of plane waves, formation and s
bility of temporal solitons, and the recurrence effect occur
a quite different way compared to the continuum case~see
Refs. @16–20#, and references therein!. Some theoretically
predicted properties of discrete systems, e.g., the exist
and dynamics of localized states, were experimentally v
fied @21,22#.

As regards arrays of optical waveguides, the evolution
one-component fields, described by a single DNLSE, h
been studied exclusively to date. However, a situation is
quently encountered where two waves, i.e., components
different frequencies or polarization states, copropagate
waveguide. In this case the cubic nonlinearity provide
nonlinear coupling between these waves yielding to cro
phase modulation~XPM! and energy exchange. The latt
effect can be neglected, provided that the wave-vector m
match between both field components is large. In continu
systems the field dynamics can then be described by
incoherently coupled NLSE’s, the properties and solutions
which were extensively studied~see Refs.@23,24#, and the
references therein!. For the specific case of equal self-pha
modulation ~SPM! and XPM the system has proved to b
integrable. An analytical expression for the resulting vec
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soliton could be derived by use of the inverse scatter
transform@25#. However, the very effect of intrinsic local
ization in discrete systems with a two-component fie
which can be described by two coupled DNLSE
~CDNLSE!, has not been addressed to date.

The aim of this paper is to investigate strongly localiz
vectorial states of the CDNLSE systematically. We deri
approximate analytical solutions for strongly localize
modes~SLM’s! of different topologies, study their stability
by a linear analysis, and verify the results obtained by
merical experiments. It is shown that the topology of so
vectorial localized states can considerably deviate from
of continuous vector solitons as well as from localized so
tions in other discrete systems studied previously.

The paper is organized as follows: In Sec. II we introdu
the CDNLSE under investigation, and discuss its parame
and normalization. In Sec. III, analytic expressions for ve
torial bright SLM’s of different topologies are derived. Th
stability analysis of typical SLM’s is performed and impl
cations for all-optical signal processing are discussed in S
IV.

II. BASIC EQUATIONS AND NORMALIZATION

In an array ofn lossless, identical, and equidistant optic
waveguide the propagation of the two-component envel
field can be described by a set of difference-differen
equations as

i
dEn

~1!

dZ
1C1~En11

~1! 1En21
~1! !1~l11uEn

~1!u21l12uEn
~2!u2!En

~1!

50,

i
dEn

~2!

dZ
1C2~En11

~2! 1En21
~2! !1~l21uEn

~1!u21l22uEn
~2!u2!En

~2!

50. ~1!

HereEn
(1) andEn

(2) represent the field envelopes of both com
ponents in thenth channel, the evolution variableZ denotes
3520 © 1998 The American Physical Society
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57 3521STRONGLY LOCALIZED VECTORIAL MODES IN . . .
the spatial coordinate along the waveguide, andC1,2
5p/(2L1,2) are the respective coupling coefficients, whe
L1,2 are the half beat lengths of the corresponding two c
coupler. The effective nonlinear coefficientsl i j
5(v i /2c)ni j r i j ~i , j 51,2! with r i j 5^uRi u2uRj u2&/^uRi u2& in-
clude dimensionless functionsRi describing the transvers
mode profile and the cubic nonlinear coefficientsni j . The
brackets denote integration over the cross section of
waveguide. For weakly guided modes in optical fibers,
haver i j '0.5 @23,24#. The transverse coupling in the arra
may be interpreted as ‘‘discrete diffraction,’’ which tran
forms to ordinary diffraction in the continuous limit.

Equations~1! can be recast in the more convenient Ham
tonian forms

i
dAn

dz
1ca~An111An21!1~lauAnu21uBnu2!An50,

i
dBn

dz
1cb~Bn111Bn21!1~ uAnu21lbuBnu2!Bn50, ~2!

where the scalingsca,b5C1,2LNL , la5l11/l12.0, lb

5l22/l12.0, z5Z/uLNLu, An5Aul21/l12u(En
(1)/Emax

(2) ), Bn

5En
(2)/Emax

(2) , and LNL5(l12uEmax
(2) u2)21 have been applied

Emax
(2) is the peak amplitude of the second field componen
As in the continuous model, system~2! describes cou-

pling between modes which either oscillate at different f
quencies (la'lb'0.5) or are orthogonally polarized in
highly birefringent waveguide. In the case of an elliptica
birefringent fiber,la5lb varies between 0.5 and 1.5 d
pending on the angle of ellipticity@26#.

Provided that the field envelopes vary slowly withn Eqs.
~2! can be transformed into the extensively studied conti
ous system which describes pulse propagation in a dispe
medium with SPM and XPM. The existence of vectorial so
ton solutions to this system gives some evidence that sim
localized solutions may exist in the discrete case as w
However, the very existence of these discrete counterpar
the continuous solutions has not been reported to date. In
context it is worthwhile to study how the continuous so
tions transform into discrete solutions of similar topolog
and if there are solutions with new topologies which a
formed owing to the discrete nature of the system.

III. BRIGHT SLM’s OF THE CDNLSE

Highly localized solutions to Eq.~2! can be found by
generalizing a method previously applied to one-dimensio
nonlinear lattices@1,13# toward vectorial fields. We conside
only resting solutions and can thus make the ansatzAn
5anexp(ikaz) and Bn5bnexp(ikbz). The stationary ampli-
tudes in each channelan5Aan andbn5Bbn are normalized
by the maximum valuesA andB, respectively. Without loss
of generality these maximum amplitudes can attain eit
sign and are assumed to be real. InsertingAn andBn into Eq.
~2! we arrive at a system of algebraic equations. Its solut
yields the stationary excitations in each waveguide of an
ray ~or equivalently on each site of a lattice! that eventually
constitute SLM’s of different topologies. We are now goin
to discuss these solutions in detail, where we attempt to
troduce a systematic categorization with respect to the to
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ogy and the symmetry of the solutions. Furthermore
study how the variation of the array parameters~linear cou-
pling, nonlinearity! as well as the input intensities of the tw
components~control parameter! affect the field evolution.

A. Odd SLM’s

These modes are centered on site, and exhibit diffe
symmetries. There are the conventional symmetric and a
symmetric solutions, but also new types that we termshifted
modes. The latter represent vectorial modes where
maxima of the two components are located at differ
waveguides.

1. Symmetric mode

We insert an5A(...,a2 ,a1,1,a1 ,a2 ,...) and bn
5B(...,b2 ,b1,1,b1 ,b2 ,...) into Eq. ~2!, and obtain, after
straightforward calculations, the approximate analytic e
pression for this SLM as

ka5laA21B2, kb5A21lbB2 ~3!

for the corresponding wave vectors, and

a1[a'ca /ka!1, b1[b'cb /kb!1 ~4!

for the secondary excitations. This approximation is cons
tent with the very subject of our studies, namely,strongly
localized modes. Note that the peak amplitudesA andB are
arbitrary parameters. We can calculate the secondary ex
tions with any desired accuracy. But because we are pri
rily interested in physical aspects of the problem, we rest
ourselves to the first-order approximation with respect to
small parametersa,b!1,and neglecta2}a2 and b2}b2 to-
gether with the higher-order terms. As will be shown belo
these first-order calculations usually provide a sufficient
curacy to understand the basic SLM properties. But, if
quired, we take into account higher-order terms in conju
tion with excitations of adjacent channels.

It is worth mentioning that the solutions found exist bo
for positive ~focusing! and negative~defocusing! nonlinear-
ity l i j . According to the normalization, the latter revers
the sign of the normalized coupling constantca,b→2ca,b ,
which implies a phase shiftp between subsequent site
Thus, assuming a positive couplingC1,2, which is physically
meaningful only, and defocusing nonlinearity (l i j ,0), we
obtain the so-calledstaggeredSLM’s @5#. These modes are
characterized by ap phase change from channel to chann
To illustrate the structure of the different modes, they a
schematically drawn in Fig. 1.

2. Antisymmetric mode

Antisymmetric modes represent another family of so
tions, and are characterized by a zero amplitude at the ce
site. Analogously to the previous case, this type
mode can be found by use of the approxima
ansatz an'A(...,0,0,a,1,0,sa ,saa,0,0, . . .) and bn
'B(...,0,0,b,1,0,sb ,sbb,0,0, . . .), wheresa andsb are scal-
ing factors. They include the possible change of the phas
p across the mode. Substitution ofan and bn into Eq. ~2!
immediately yieldssa5sb521, revealing the antisymmetric
character of the solution with respect to the central site w
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zero amplitude@Fig. 1~b!#. The wave vectors and seconda
excitations of this SLM coincide with those given by Eqs.~3!
and ~4!. Note that this type of mode can be viewed as
superposition of two symmetric odd SLM’s with a pha
differencep. The zero amplitude at the central site resu
from opposite signs and equal amplitudes of the second
excitations there.

3. Shifted odd mode

The substitutionan'A(...,0,a21 ,a051,a1,0,0, . . .) and
bn'B(...,0,0,b0 ,b151,b2,0, . . .) into Eq. ~2! reveals an-
other family of bright odd SLM’s@Fig. 1~c!#. The secondary
excitations of this mode,

a215ca /~laA2!, a15ca /~laA22B2!,

b05cb /~lbB22A2!, b25cb /~lbB2!, ~5!

can again be derived from the corresponding set of algeb
equations. The existence of such a SLM is a consequenc
the vectorial character of interaction. The correspond
fields an and bn may have an asymmetric structure@Fig.
1~c!#.

Note that expressions~5! are only valid for strongly lo-
calized modes, i.e., forua21,1u!1 and ub0,2u!1. Hence the
evolution of this mode is drastically affected by the ratio
the peak amplitudesA/B. In Fig. 2 the evolution of the field
intensitiesub0u2 and ub1u2 in two adjacent channels„n51

FIG. 1. Schematic representation of different kinds of o
modes. Unidirectional and contradirectional arrows denote in-ph
and out-of-phase~p phase shift! oscillations of the electric field.
Right- and left-hand side charts show staggered~defocusing nonlin-
earity l i j ,0,! and unstaggered~focusing nonlinearityl i j .0!
SLM’s, respectively.
a

s
ry

ic
of
g

f

@Fig. 2~a!# andn50 @Fig. 2~b!#… is shown as a function of the
amplitudea05A. Equal coupling and nonlinear coefficien
for both components have been assumed. Evidently,
shifted mode is formed and propagates stable ifuA22B2u
exceeds some critical value. Otherwise, the mode is unsta
i.e., there is a periodic energy exchange between chan
n50 andn51.

B. Even SLM’s

Now we proceed with even SLM’s which are center
between the array sites. There is a greater diversity of s
tions compared to the previous situation, because in this c
more waveguides are involved~for a systematic overview
see Fig. 3!.

Bright even symmetric SLM’s can be classified as unst
gered (ca,b.0) and staggered (ca,b,0) depending on
whether the excitations in adjacent waveguides are in ph
or out of phase, respectively@Fig. 3~a!#. Moreover, like the
scalar DNLSE, the CDNLSE admits a family of even SLM
which are characterized by a phase jumpp at the center, and
can thus be termedtwistedmodes@Fig. 3~b!#. We will show
below that the stability behavior of these modes differs qu
tatively from that of odd staggered and unstaggered SLM

Furthermore the coupled system~2! provides a new fam-
ily of even solutions, namely, asymmetric SLM’s@Figs. 3~c!
and 3~d!#. These modes have no counterparts in continu
or in other discrete models. Finally, there is also a family
shifted even solutions@Fig. 3~e!#.

1. Symmetric modes

We start with the class of symmetric SLM’
of the forms an'A(...,0,0,a,1,sa ,saa,0,0, . . .) and bn

se

FIG. 2. Intensity of theB component in the two adjacent chan
nels n51 ~a! andn50 ~b! as a function of the ratio of peak am
plitudesuAu/uBu and the propagation distancez. All quantities used
in this and in the following figures are dimensionless. Paramet
ca5cb50.2, la5lb51, andB51.
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57 3523STRONGLY LOCALIZED VECTORIAL MODES IN . . .
'B(. . . ,0,0,b,1,sb ,sbb,0,0, . . .), where for the symmetric
case Eq.~2! requiressa,b561 to hold. Thus the correspond
ing wave vectors and amplitudes of the secondary excitat
are given in a first-order approximation by

ka5casa1laA21B2, kb5cbsb1A21lbB2 ~6!

a5ca /ka , b5cb /kb . ~7!

Owing to uau,ub!1 the modes are again strongly localize
Similarly to the respective odd modes, the wave vectors
the secondary amplitudes are not affected by the sign oA
and B ~i.e., phase 0 orp for the entire solution!. Recalling
that for a defocusing nonlinearity (l i j ,0) the coupling co-
efficients are negative, it follows from Eq.~7! that a,b,0.
Now it is clear that four different types of symmetric mod
can exist. Fora,b.0 we obtainunstaggeredmodes@Fig.
3~a!, left# being antisymmetric ortwistedfor sa,b521 @Fig.
3~b!, left#. Conversely, staggered modes appear fora,b,0
@Fig. 3~a!, right#, and twisted modes here requiresa,b51 to
hold @Fig. 3~b!, right#. Note that a symbiotic pair of~un!stag-
gered and twisted~un!staggered components is also possib

2. Asymmetric modes

These modes can be obtained upon substitution of
asymmetric ansatz an'A(...,0,0,a22 ,a2151,a1
5sa ,saa2,0,0, . . .) and bn'B(...,0,0,sbb22 ,b215sb ,b1

FIG. 3. Same as in Fig. 1 for even modes.
ns

.
d

.

e

51,b2,0,0, . . .) into Eq. ~2!, where the subscriptn50 has
been dropped for convenience. Hereusa,bu,1, which com-
plicates the analysis considerably. From the correspond
set of algebraic equations we obtain the wave vectors and
secondary amplitudes

ka5casa1laA21sb
2B2, kb5cbsb1sa

2A21lbB2, ~8!

a25a225ca /ka , b25b225cb /kb . ~9!

The amplitudessa and sb that enter Eqs.~8! and ~9! are
determined by

~ca2laA2sa!~sa
221!1B2sa~sb

221!50,

~cb2lbB2sb!~sb
221!1A2sb~sa

221!50. ~10!

Analytical solutions to Eq.~10! can be found only in some
particular cases. For example, assumingsa5sb , one imme-
diately obtains this value together with a condition for t
ratio of the peak amplitudes

sa5sb5
ca1cbla

B2~lalb21!
, A2/B25~calb1cb!/~cbla1ca!.

~11!

As can be easily seen from Eq.~11!, these solutions do no
exist for lalb'1. One of the possible realizations of th
mode is shown schematically in Fig. 3~c!.

Another case which is analytically solvable requires th
one of the excitationssa or sb is much less than unity. Fo
usbu!1 and usau>1, the approximate solutions to Eq.~10!
can be written as

sa
2'12

B2

laA2 S 11
ca

A~laA2!22la~AB!2D ,

sb'
cbla

B2~lalb21!
!1. ~12!

This particular of a SLM can be viewed as a bound st
formed by an even asymmetric mode (An) and an odd mode
(Bn) @Fig. 3~d!#.

3. Shifted even mode

To obtain this mode we writean'A(...,0,a22 ,a21
51,a1 ,a2,0,0, . . .) and bn'B(...,0,0,b21 ,b1 ,b2
51,b3,0, . . .) toobtain

ka5laA21caa1 , kb5lbB21cbb1 ,

a225ca /ka , a25caa1 /~ka2B2!, b35cb /kb ,

b215cbb1 /~kb2A2!, ~13!

where the amplitudes of the excitationsa1 and b1 are the
solutions of

~ca2laA2a1!~12a1
2!1B2b1

2a150,

~cb2lbB2b1!~12b1
2!1A2a1

2b150. ~14!
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For relatively large amplitudesa1@ca /(laA2) and b1
@cb /(lbB2), Eq. ~14! exhibits approximate solutions

a1
2'

lb~laA22B2!

A2~lalb21!
, b1

2'
la~lbB22A2!

B2~lalb21!
. ~15!

A numerical experiment proves~see Fig. 4! that this shifted
mode may propagate stable even if the initial profile is c
culated by using the approximate formula~15!. Here equal
peak amplitudeA5B have been used. The peculiarity of th
mode is worth noting, viz., only one excitation of each co
ponent, i.e.,a1 andb1 , exhibits thep phase shift@Fig. 3~e!#.
This distinguishes this SLM from the unstaggered as wel
the twisted modes.

Another solution to Eq.~14! can be obtained in the limit
ing case of very small excitations,ua1u,ub1!1. Then a1
'ca /(laA2) and b1'cb /(lbB2), and the shifted even
mode transforms into the doubly shifted odd mode.

IV. STABILITY ANALYSIS OF BRIGHT SLM’s

In Sec. III, the existence of various stationary vector
solutions of the CNLDSE, that are strongly localized acro
the array, was shown. Obviously, the stability of the
SLM’s is an important issue which will now be addresse
This subject is of particular interest here for two reaso
First, because the solutions were derived by using some
proximation, they contain some ‘‘intrinsic perturbation
Thus the question arises immediately if these modes tr

FIG. 4. Stable propagation of a perturbed even-shifted S
schematically shown in Fig. 3~e!. Parameters:ca5cb50.05, la

5lb50.5, andA5B51. The waveguides are labeled by positi
numbers.
l-

-

s

l
s
e
.
.
p-

s-

form adiabatically into stable, stationary solutions of t
complete CNLDSE~2!. Second, implications for all-optica
switching and beam steering can be derived in identify
the boundaries in parameter space between stable and
stable domains.

In the literature, various approaches were used to inve
gate the stability behavior of strongly localized solutions
discrete systems. Obviously, a complete scan of the par
eter space is inappropriate by means of a direct numer
integration of Eq.~2!. Another evaluation of the stability
relies on the so-called Peierls-Nabarro~PN! barrier@4,5#. Ac-
cording to this concept, odd and even modes of the sa
topology can be considered as two realizations of a comm
mode centered either on-site or between the sites. Now
odd and even SLM’s of equal intensities, the difference
the corresponding Hamiltonians~viz. the PN barrier! deter-
mines which of the two realizations corresponds to the m
mum energy and hence is stable. To interpret the res
correctly, a negative effective mass has to be introduced
staggered solutions@5#. Being only a qualitative method, th
PN approach provides no information about the instabi
gain, and fails in analyzing the stability of twisted mod
because they lack an odd counterpart. Eventually, the va
tional approach was applied to study the stability of re
tively weakly localized modes of the generalized DNLS
@27#, and the chaotic behavior of solutions of three coup
NLSE’s was predicted by calculating the Lyapunov expon
@28,29#.

A clear and instructive alternative to tackle the stabil
problem consists of performing a direct linear analysis. U
ing this approach, it was shown@30# that, in contrast to the
DNLSE, the odd localized modes of the Fermi-Pasta-Ul
lattice are unstable, whereas even modes have been prov
be stable. Although this method cannot predict the ultim
evolution of an unstable SLM, it accurately describes
onset of instability and yields the initial instability gain, i.e
the decay rate of the mode.

To investigate the stability, we impose complex perturb
tions «n(t) and dn(t) on each nonzero excitation of bot
components of the vectorial SLM’s. Beginning with eve
modes, we insert the perturbed stationary solutionsan
5A(...0,0,a1«22,11«21 ,sa1«11 ,saa1«12,0,0, . . .) and
bn 5 B(...0,0,b1 d22,11 d21 ,sb1d11 ,sbb1d12,0;0, . . .)
into the governing equations~2!. Neglecting all nonlinear
terms in the small parametersa,b,«6 j , andd6 j ( j 51,2), we
obtain a set of eight coupled complex ordinary different
equations that is equivalent to a 16th-order eigenvalue p
lem. But, the analysis can be simplified considerably by
ing a proper decomposition of the perturbations« j

65«1 j

6«2 j andd j
65d1 j6d2 j into symmetric~1! and antisym-

metric ~2! components. In doing so, the dimension can
reduced by a factor of 2 because the problem splits into
independent parts. After the separation of real and imagin
parts of the perturbations« j

65« j r
66 i« j i

6 and d j
65d j r

6

6 id j i
6 , we arrive at the eighth-order eigenvalue problem

real variables:

dP

dz
5S MA

MB

M̃A

MB
D P. ~16!

Here the perturbation vector P6,6
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5(«1r
6 ,«1i

6 ,«2r
6 ,«2i

6 ,d1r
6 ,d1i

6 ,d2r
6 ,d2i

6)T contains either sym-
metric ~1,1! or antisymmetric~2,2! perturbations of both
fields if the components of the vectorial SLM exhibit th
same symmetry (sa5sb). For sa52sb , symmetric pertur-
he
ot
t,

is
as

as

s

s
h
e

e

r

ic

od

n

bations~1! of one component are coupled to antisymmet
ones ~2! of the other component, i.e., P6,7

5(«1r
6 ,«1i

6 ,«2r
6 ,«2i

6 ,d1r
7 ,d1i

7 ,d2r
7 ,d2i

7)T. The square 434
submatricesMA,B andMA,B have the forms
MA5S 0
22laA22ca~p2sa!

0
2ca

ca~p2sa!

0
ca

0

0
2ca

0
casa1laA21B2

ca

0
2~casa1laA21B2!

0
D ,

MB5S 0
22lbB22cbsb~sap21!

0
2cb

cbsb~sap21!

0
cb

0

0
2cb

0
cbsb1A21lbB2

cb

0
2~cbsb1A21lbB2!

0
D , ~17!
,

s
ode
uch
bil-
re.

the
sec-
s
der
.
the

-

de
s
’s.
where p denotes the symmetry of the perturbation, i.e.,p
51 and21 correspond to the upper and lower sign in t
expression for the perturbation vector, respectively. B
submatricesM̃A,B5q̃ kl

A,B have only one nonzero elemen
viz. q̃ 21

A 522sasbB2 and q̃ 21
B 522sasbA2, respectively.

Scalar limit.Before proceeding with the stability analys
of the vectorial modes, we concisely review the scalar c
for the sake of comparison. If eitherB or A vanishes, Eq.
~16! simplifies to the eigenvalue problem of the scalar c
which was studied in detail in Ref.@31#. If we introduce
«6}exp(Gz), where for an even scalar modek5kauB50 is
given by Eq.~6!, the scaled eigenvaluesg5G/k can be de-
rived from the biquadratic equation

g41@112~p2s!a12~322ps!a2#g2

12~p2s!a12~322ps!a250, ~18!

wheresa5s. If the symmetry of the perturbation coincide
with that of the SLM (s5p), Eq. ~18! does not exhibit real-
valued solutions provided thata is small as required. Thu
the SLM is always stable against those perturbations. T
result has been verified numerically. Conversely, if the p
turbation has the opposite symmetry of the SLM (p52s)
the SLM can become unstable@Re(g)Þ0#. We observed two
basically different kinds of SLMs dynamics. Both stagger
and unstaggered modes (sa.0) are always unstable with
respect to symmetric and antisymmetric perturbations,
spectively, and the gain of instability

g'2Asa~125sa/4! ~19!

increases witha ~see Fig. 5, upper branches!. In agreement
with the previously reported results@4,5,27#, the instability
of unstaggered modes is confirmed by a direct numer
solution of the DNLSE. The perturbed unstaggered~stag-
gered! SLM decays and transforms subsequently into an
mode. For relatively small amplitudes (a'0.1) the interme-
diate asymmetric, oscillating state is fairly persistent, a
can be thus considered a quasistationary state.
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In contrast to~un!staggered SLM’s, modes withsa,0,
namely,twisted staggered~TS! ~s51, a,0! andtwisted un-
staggered~TU! ~s521, a.0! SLM’s, are unstable only if
the modulus of the amplitudea exceeds some critical value
i.e., uau.acr'0.12. The corresponding gain is

g'A~2sa2acr!/2, sa1acr,0 ~20!

~see Fig. 5, lower curves!. The stability of the twisted mode
can be explained by the fact that neither the TU nor TS m
has a topological counterpart among odd SLM’s. Hence s
a twisted SLM cannot transform into an odd one, and sta
ity arguments based on the PN barrier do not apply he
Beyond the critical valueacr , the onset of instability mani-
fests itself in a spreading of the mode, and sets in if
localization becomes weaker because of an increasing
ondary amplitudeuau. Note that the instability regions a
well as the gain do not significantly change if second-or
terms and excitations at sitesunu53 are taken into account

Coming back to the vectorial case, one can show that
corresponding eigenvalue problem~16! can be reduced to a
quartic algebraic equation for the squared eigenvaluesm,
where a positive real part ofg56Am represents the insta
bility gain @P}exp(Gz), G5gka#. If both components of the

FIG. 5. Instability gain as a function of the secondary amplitu
a for even SLM’s in the limit of the scalar DNLSE. Upper curve
apply to ~un!staggered modes, and lower curves to twisted SLM
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SLM have the same symmetry (sa5sb5s), equal peak am-
plitudes (A5B), and linear (ca5cb5c) and nonlinear cou-
pling (la5lb5l), the characteristic polynomial of Eq.~16!
can be factorized into four easily solvable biquadratic eq
tions. We will show below that basic tendencies of SLM
evolution can be derived from this particular case. Hence
initially focus on these conditions which are also quite re
istic.

The essential results compare to those obtained for
scalar DNLSE. However, the vectorial nature of the inter
tion introduces some new effects even if both component
the SLM are equal. As expected, both unstaggered and s
gered even modes (sa.0) are always unstable: the forme
with respect to the antisymmetric (p521) perturbation and
the latter with respect to the symmetric (p51) one. In both
cases the instability gain coincides with that in the sca
case~19! and, in addition, another eigenvalue of~16! evokes
the nonvanishing instability gain

g'2S l21

l11
saD 1/2

~21!

if l.1. The decay character of the respective SLM’s
sembles that encountered in the scalar situation. The a
symmetrically perturbed unstaggered SLM transforms i
the odd mode in both components, as illustrated in Fig. 6~a!.
However, being qualitatively the same, the transformation
the even mode may result in an asymmetric odd state w
different peak amplitudes@Fig. 6~a!#. The transition distance
to the resulting odd state depends drastically on the valu
the secondary amplitude. If the secondary amplitude
creases, the intermediate oscillating state@Fig. 6~a!# becomes
fairly persistent, and the small satellite pulse decouples o
after the localized structure adiabatically loses some ene
due to diffraction across the array. There is no strong dep
dence on the sign of nonlinearity, and practically the sa
evolution was observed forl,1 as well. Here only the gain
given by Eq.~19! causes the decay. This behavior can
anticipated because the odd mode is the only stable cou
part of the even unstaggered SLM. The asymmetric state
system passes through is unstable, while another pote
state to transfer to, the stable shifted odd mode, does
exist for equal peak amplitudesA andB.

The evolution of the SLM appears differently if bot
components of the mode are antisymmetrically pertur
@Fig. 6~b!#. These initial conditions provoke a nonstationa
oscillatory solution. Note that an intense anharmonic ene
exchange between the two waveguides@Fig. 6~b!# occurs
only if the nonlinearity exceeds some critical valuel.lcr ,
whereas forl,lcr both components exhibit periodic osci
lations whose amplitudes do not exceed the amplitude of
perturbation. The critical value of the nonlinearity where t
systems undergoes bifurcation depends on the array pa
eters and amounts tolcr'1.4 for the situation depicted in
Fig. 6. We stress, however, that any asymmetric perturba
causes a fast decay of the solutions reminiscent to that sh
in Fig. 6~a!.

If both the perturbation and the mode exhibit the sa
symmetry (sa,b5p), a positive eigenvalue of Eq.~16! indi-
cates a small nonzero gainG5gka'ucuA2(12l)/(11l)
for l,1. This gain is quite different from that describe
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above, viz. it is linearly proportional to the coupling consta
c and, more important, independent of the peak amplitudeA.
To check whether this behavior originates from the lack
accuracy introduced by the first-order approximation, w
took second-order terms into account in the small param
a, as well as the next-order excitations (n563) which are
likewise of the order ofa2. The respective calculations agai
result in a positive eigenvalue, but are already proportio
to c2. This clearly shows the artificial character of this inst
bility gain. This result was confirmed by numerical studie
We also mention that in accounting for higher-order term
the genuine gain given by Eqs.~19! and~21! is only slightly
modified. Therefore, even unstaggered~staggered! modes are
stable with respect to symmetric~antisymmetric! perturba-
tion.

FIG. 6. Evolution of a perturbed symmetric unstaggered vec
rial SLM (sa5sb5s51). Parameters:la5lb5l51.5, A5B
51, and ca5cb5c50.44. ~a! P2,25(0.01,0,0,0,0,0,0,0,0,0,0) is
the transition to the odd mode,~b! P2,25(0.01,0,0,0,0,
20.01,0,0,0,0,0); theB component has the same oscillatory beha
ior.
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This behavior of even symmetric SLM’s may find app
cations in digital information processing. Small perturbatio
of one component launched into waveguidesn51(«1) and
n521(«21) serve as signals. If both signals are input
multaneously~«15« and«215«, which denotes a logic 1 in
both channels! or in the absence of any perturbation~«150
and«2150, logic zero! the output intensity in both channe
is high because the mode is stable with respect to the s
metric perturbation. Conversely, if only one signal«1 («21)
is launched, the output intensity ofboth componentsin the
channeln51 (n521) is high, whereas the intensity in th
adjacent channels is almost zero@Fig. 6~a!#. Thus the logic
function«11 «̄21 ~the bar denotes logic negation! in channel
n51 and the complementary function«̄11«21 in channel
n521 can be realized.

Unlike the ~anti!symmetrically perturbed~un!staggered
modes that always transform to an odd mode, the pertur
twisted modes may exhibit three different types of evolut
depending on the nonlinearity and the degree of localiza
~Fig. 7!. The linear analysis predicts stable upper bound
by the critical secondary amplitudesacr1 and acr2, respec-
tively, as

uacru'
2~12l!

5l21
, uacr2u'0.12. ~22!

Numerical integration of Eqs.~2! confirms this prediction.
The propagation of theB component of the perturbed vecto
rial TU SLM ~point R in Fig. 7! is plotted in Fig. 8~a!. A
likewise stable behavior was observed for the mode loca
at point S in parameter space~Fig. 7!. However, a slight
decrease in the secondary amplitude~transition from pointR
to point Q, i.e., the location of the mode changes from d
main I to domain II! leads to an instability gain

gII'2F12l

11l
uauS 12

uau
uacr1u

D G1/2

, l,1, uau,uacr1u

~23!

and the twisted unstaggered~s521, a.0! or twisted stag-
gered~s51, a,0! SLM becomes unstable@Fig. 8~b!#. An-
other type of unstable evolution is shown in Fig. 8~c!. It

FIG. 7. Analytically calculated regions of stability and instab
ity of twisted vectorial SLM’s with equal peak amplitudesA5B.
~I! Stable propagation of the mode.~II ! Instability due to real posi-
tive eigenvalues.~III ! Instability due to complex eigenvalues.
s

-

-

ed

n
et

d

-

takes place for a SLM located in region III, with a ga
determined by the imaginary part of the complex eigenva
gIII'A(a2acr2)/2, whereacr2 is given by Eq.~22!.

Thus one can draw the conclusion that the characte
eigenvalues~real or complex! essentially determines the kin
of decay of the twisted mode. It is worth mentioning that f
l,1 the increasinglocalization also results in an unstab
evolution~transition to region II, see Fig. 7! which is another
interesting peculiarity of twisted vectorial SLM’s.

Now we leave the symmetric case (A5B), and proceed
with a brief review of the essential features of SLM’s wi
unequal amplitudes, where we maintain the assumption
equal coupling constants and nonlinearities. For~un!stag-
gered modes the situation is qualitatively similar to the sy
metric case: a symmetric perturbation causes no instab
gain, whereas any asymmetric perturbation forces the S
to decay. We also note that these twisted modes may
exist in other discrete systems such as Fermi-Pasta-Ulam
tices or arrays with quadratic nonlinearity@32#.

As before, the twisted modes exhibit a much richer div
sity of evolution scenarios. Provided that one of the pe
amplitudes, sayA, is fixed, an increasing ratioB/A tends to
stabilize the initially unstable SLM. For instance, if the line
coupling slightly exceeds the critical value, so that the v

FIG. 8. Propagation of the perturbed twisted unstaggered S
(s521). A5B51, la5lb5l, andca5cb5c. TheB component
is shown, and theA component has a similar structure.~a! l
50.9, c50.12 ~point R in Fig. 7!. The evolution corresponding to
point S in Fig. 7 is similar.~b! l50.9,c50.07~point Q in Fig. 7!.
~c! l51.5 andc50.29 ~point T in Fig. 7!.
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3528 57DARMANYAN, KOBYAKOV, SCHMIDT, AND LEDERER
torial SLM with equal amplitudes becomes unstable, a mi
increase inB ~with A being constant! will stabilize the mode.
Analogously, if the linear coupling is sufficiently small t
guarantee a stable propagation of the symmetric mod
decrease inB down to some critical valueBcr , which is a
function of c and l, will eventually destabilize the SLM
This behavior can be easily understood recalling our pre
ous results. The whole mode becomes unstable if the sec
ary excitation ofany componentexceeds the respective crit
cal value. Thus the secondary excitation of the weaker~in the
latter exampleB! component is responsible for the SLM
decay. Similarly to~un!staggered SLM’s this dynamics im
plies potential applications for all-optical switching, where
slight change of the input intensity yields a strong outp
modulation.

If the nonlinear coefficientl is fixed and the linear cou
pling c is weak, the mode is stable even for a vanish
amplitude of the second component (B50). This is in agree-
ment with the scalar limit. Some more interesting features
the SLM’s dynamics were identified by numerical means
the coupling constantca5cb5c corresponds to a stable situ
ation in the scalar limit~e.g.,c50.15 forl51.5! the vecto-
rial mode becomes unstable for a relatively large second
excitation of theB component. However, this kind of insta
bility occurs only in a narrow parameter region 0,Bcr1,B
,Bcr2. Obviously the weak second component is too poo
localized for an independent stable propagation as a sc
mode. Its trapping by the intense,strongly localizedfield A
leads to a stabilization of the whole vectorial mode. If t
amplitudeB exceedsBcr1, but this component is still no
strongly localized, theA field fails to trap, resulting in the
decay of the vectorial mode. The scenario of mode disin
gration is similar to that plotted in Fig. 8~c!. Conversely, if
the amplitude of the second component increases and
ceedsBcr2, both components are strongly localized, a
form a stable vectorial mode.

Another particular case, namely, that of equal self- a
cross-phase modulation (la5lb51), can be treated analyti
cally, because the eigenvalue problem factorizes into a p
uct of four biquadratic equations. In analyzing the charac
istic polynomial of Eq. ~16!, it can be shown that the
situation completely resembles that for equal amplitud
The SLM becomes unstable only if the secondary amplit

FIG. 9. Instability gain of the asymmetric twistedlike mode a
function of peak amplitudeB. Parameters:la5lb51.5, A51.05,
ca5cb50.1, sa520.7, andsb50.11.
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exceeds the critical value~22!, which is equal for both com-
ponents here. This instability is due to complex eigenvalu

The very technique of the stability analysis can straig
forwardly be extended toward odd modes. After decompo
tion of the perturbations into symmetric and antisymmet
ones, it is easy to realize that the system is solvable for
antisymmetric perturbations, and reveals stability aga
these perturbations. It remains to check the stability aga

FIG. 10. Propagation of a twistedlike asymmetric vectorial SL
for the set of parameters Fig. 9.~a! B51: stable.~b! B50.95:
unstable.



on
em

th
th
de
e

tu

on
nt
Be
e

le
n
in

e

up

ed
e
o
g

. W
m
th
d

e

o
n
e
in
re
s
th
ed
’s

of
ap-

s
-
r
e
the
as
ns
ive
.

he
olk-
rtial

e

el

57 3529STRONGLY LOCALIZED VECTORIAL MODES IN . . .
symmetric as well as perturbations of the central excitati
A straightforward calculation leads to an eigenvalue probl
similar to that given by Eq.~16! for symmetrically perturbed
even unstaggered SLMs. The detailed analysis yields
symmetric odd modes become unstable only beyond
strong localization limit, resulting in a spreading of the mo
across the whole array. Conversely, it turns out that symm
ric odd SLMs are always stable with respect to any per
bation.

Unfortunately a proper decomposition of the perturbati
that permits the simplifications used for symmetric and a
symmetric modes, fails in studying asymmetric modes.
cause of the very asymmetric nature of the mode, the eig
value problem for the perturbations cannot be decoup
and, even in the simplest case of the first-order calculatio
a 16th-order eigenvalue problem has to be solved. In do
so we found that ‘‘twistedlike’’ asymmetric states@Fig. 3~d!#
can be either stable or unstable depending on the degre
localization, whereas unstaggeredlike@Fig. 3~c!# solutions
are always unstable.

As can be seen from Fig. 9, the asymmetric SLM is s
posed to be stable if the peak amplitude of theB component
exceeds some critical value that amounts toB51 here. But,
this stable propagation, shown in Fig. 10~a! can be destroyed
by a slight change of the peak amplitude@Fig. 10~b!#. Note
that this SLM decays more rapidly than symmetric twist
modes do. This is due to an ‘‘intrinsic bias’’ of the mod
caused by the asymmetry. Hence it seems to be very pr
ising to use this kind of mode in all-optical signal processin
because less power is needed to switch the output state
performed numerical experiments to identify the optimu
array length as well as the control signal that diminishes
peak amplitude of theB component. As can be recognize
from Fig. 11, a change in the peak intensity of theB com-
ponent by a few percent suffices to switch the whole pow
from one channel to the adjacent one completely.

V. CONCLUSIONS

Strongly localized, bright vectorial solutions of tw
coupled DNLSE’s were shown to exist. In addition to co
ventional odd and even modes known from other discr
systems, in particular from the scalar DNLSE, interest
types of SLM’s—asymmetric and shifted modes—we
identified. We compared the properties of the same type
solutions in the scalar and vectorial cases. Moreover,
peculiarities of the these types of SLM’s were discuss
Approximate analytic expressions for all types of SLM
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were derived. Their stability was investigated by means
the linear analysis. As in the scalar scenario, odd modes
pear to be stable while even~un!staggered SLM’s are alway
unstable with respect to~anti!symmetric perturbation. Con
versely, even modes with thep phase jump at the cente
~twisted modes! can withstand any small perturbation. Th
stability properties of these modes are determined by
ratio of nonlinear self- and cross modulation coefficients
well as by the degree of localization. The instability regio
and the respective gain found analytically permit to der
implications for all-optical switching and logical operation

ACKNOWLEDGMENTS

The authors gratefully acknowledge grants from t
Deutsche Forschungsgemeinschaft, Bonn and the V
swagen Stiftung, Hannover. S. D. also acknowledges pa
support from NATO Linkage Grant No. 960298.

FIG. 11. All-optical switching by using asymmetric SLM’s. Th
intensity of theB component in channels withn51 ~a! and n
521 ~b! is plotted as a function of initial amplitude in chann
with n51, b1(0), and thepropagation distance.
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